The ability to effectively reuse prior knowledge is a key requirement when building general and flexible Reinforcement Learning (RL) agents. Skill reuse is one of the most common approaches, but current methods have considerable limitations.For example, fine-tuning an existing policy frequently fails, as the policy can degrade rapidly early in training. In a similar vein, distillation of expert behavior can lead to poor results when given sub-optimal experts. We compare several common approaches for skill transfer on multiple domains including changes in task and system dynamics. We identify how existing methods can fail and introduce an alternative approach to mitigate these problems. Our approach learns to sequence existing temporally-extended skills for exploration but learns the final policy directly from the raw experience. This conceptual split enables rapid adaptation and thus efficient data collection but without constraining the final solution.It significantly outperforms many classical methods across a suite of evaluation tasks and we use a broad set of ablations to highlight the importance of differentc omponents of our method.
translated by 谷歌翻译
机器人将在整个生命周期中都会经历非平稳环境动态:机器人动态可能会因磨损而改变,或者周围的环境可能会随着时间而改变。最终,机器人在遇到的所有环境变化中都应表现良好。同时,它仍然应该能够在新环境中快速学习。我们在这样的终身学习环境中确定了强化学习(RL)的两个挑战:首先,现有的现有非政策算法在保持旧环境中保持良好绩效和有效学习之间的权衡方面挣扎尽管将所有数据保留在重播缓冲区中,但新环境。我们提出了离线蒸馏管道,以通过将培训程序分离为在线互动阶段和离线蒸馏阶段来打破这一权衡。第二,我们发现,通过从一生中多个环境中的不平衡的非政策数据进行培训会产生重要性能下降。我们确定这种性能下降是由数据集中质量不平衡和大小的组合引起的,这些质量和大小加剧了Q功能的外推误差。在蒸馏阶段,我们通过使策略更接近生成数据的行为策略来应用一个简单的解决方案。在实验中,我们在各种环境变化中通过模拟的两足机器人步行任务证明了这两个挑战和拟议的解决方案。我们表明,离线蒸馏管线在所有遇到的环境中都能取得更好的性能,而不会影响数据收集。我们还提供了一项全面的实证研究,以支持我们对数据不平衡问题的假设。
translated by 谷歌翻译
我们研究了复杂几何物体的机器人堆叠问题。我们提出了一个挑战和多样化的这些物体,这些物体被精心设计,以便要求超出简单的“拾取”解决方案之外的策略。我们的方法是加强学习(RL)方法与基于视觉的互动政策蒸馏和模拟到现实转移相结合。我们的学习政策可以有效地处理现实世界中的多个对象组合,并展示各种各样的堆叠技能。在一个大型的实验研究中,我们调查在模拟中学习这种基于视觉的基于视觉的代理的选择,以及对真实机器人的最佳转移产生了什么影响。然后,我们利用这些策略收集的数据并通过离线RL改善它们。我们工作的视频和博客文章作为补充材料提供。
translated by 谷歌翻译
深度强化学习(RL)导致了许多最近和开创性的进步。但是,这些进步通常以培训的基础体系结构的规模增加以及用于训练它们的RL算法的复杂性提高,而均以增加规模的成本。这些增长反过来又使研究人员更难迅速原型新想法或复制已发表的RL算法。为了解决这些问题,这项工作描述了ACME,这是一个用于构建新型RL算法的框架,这些框架是专门设计的,用于启用使用简单的模块化组件构建的代理,这些组件可以在各种执行范围内使用。尽管ACME的主要目标是为算法开发提供一个框架,但第二个目标是提供重要或最先进算法的简单参考实现。这些实现既是对我们的设计决策的验证,也是对RL研究中可重复性的重要贡献。在这项工作中,我们描述了ACME内部做出的主要设计决策,并提供了有关如何使用其组件来实施各种算法的进一步详细信息。我们的实验为许多常见和最先进的算法提供了基准,并显示了如何为更大且更复杂的环境扩展这些算法。这突出了ACME的主要优点之一,即它可用于实现大型,分布式的RL算法,这些算法可以以较大的尺度运行,同时仍保持该实现的固有可读性。这项工作提出了第二篇文章的版本,恰好与模块化的增加相吻合,对离线,模仿和从演示算法学习以及作为ACME的一部分实现的各种新代理。
translated by 谷歌翻译
Although recent deep learning-based calibration methods can predict extrinsic and intrinsic camera parameters from a single image, their generalization remains limited by the number and distribution of training data samples. The huge computational and space requirement prevents convolutional neural networks (CNNs) from being implemented in resource-constrained environments. This challenge motivated us to learn a CNN gradually, by training new data while maintaining performance on previously learned data. Our approach builds upon a CNN architecture to automatically estimate camera parameters (focal length, pitch, and roll) using different incremental learning strategies to preserve knowledge when updating the network for new data distributions. Precisely, we adapt four common incremental learning, namely: LwF , iCaRL, LU CIR, and BiC by modifying their loss functions to our regression problem. We evaluate on two datasets containing 299008 indoor and outdoor images. Experiment results were significant and indicated which method was better for the camera calibration estimation.
translated by 谷歌翻译
Disentanglement of constituent factors of a sensory signal is central to perception and cognition and hence is a critical task for future artificial intelligence systems. In this paper, we present a compute engine capable of efficiently factorizing holographic perceptual representations by exploiting the computation-in-superposition capability of brain-inspired hyperdimensional computing and the intrinsic stochasticity associated with analog in-memory computing based on nanoscale memristive devices. Such an iterative in-memory factorizer is shown to solve at least five orders of magnitude larger problems that cannot be solved otherwise, while also significantly lowering the computational time and space complexity. We present a large-scale experimental demonstration of the factorizer by employing two in-memory compute chips based on phase-change memristive devices. The dominant matrix-vector multiply operations are executed at O(1) thus reducing the computational time complexity to merely the number of iterations. Moreover, we experimentally demonstrate the ability to factorize visual perceptual representations reliably and efficiently.
translated by 谷歌翻译
在社交媒体中发现进攻性语言是社交媒体面临的主要挑战之一。研究人员提出了许多高级方法来完成这项任务。在本报告中,我们尝试利用他们的方法中的学习,并结合我们的想法以改进它们。我们在对进攻推文分类中成功实现了74%的准确性。我们还列出了社交媒体界的滥用内容检测中的即将到来的挑战。
translated by 谷歌翻译
目标:探索深度学习算法进一步简化和优化尿道板(UP)质量评估的能力,使用板客观评分工具(POST),旨在提高Hypospadias修复中提高评估的客观性和可重复性。方法:五个关键的邮政地标是由专家在691图像数据集中的专家标记,该数据集接受了原发性杂质修复的青春期前男孩。然后,该数据集用于开发和验证基于深度学习的地标检测模型。提出的框架始于瞥见和检测,其中输入图像是使用预测的边界框裁剪的。接下来,使用深层卷积神经网络(CNN)体系结构来预测五个邮政标记的坐标。然后,这些预测的地标用于评估远端催化性远端的质量。结果:所提出的模型准确地定位了gan区域,平均平均精度(地图)为99.5%,总体灵敏度为99.1%。在预测地标的坐标时,达到了0.07152的归一化平均误差(NME),平均平方误差(MSE)为0.001,在0.1 nme的阈值下为20.2%的故障率。结论:此深度学习应用程序在使用邮政评估质量时表现出鲁棒性和高精度。使用国际多中心基于图像的数据库进行进一步评估。外部验证可以使深度学习算法受益,并导致更好的评估,决策和对手术结果的预测。
translated by 谷歌翻译
这项研究开发了一个无人驾驶系统(UASS)的框架,以监测高层建筑项目中未受保护的边缘和开口附近的跌落危险系统。开发并测试了一个三步基于机器学习的框架,以检测UAS捕获的图像的护栏柱。首先,对护栏探测器进行了培训,以定位支撑护栏的职位的候选位置。由于从实际的工作现场收集的此过程中使用了图像,因此确定了几个错误检测。因此,在以下步骤中引入了其他约束,以滤除错误检测。其次,研究团队将水平线检测器应用于图像,以正确检测地板并删除离地板不近的检测。最后,由于每个帖子之间安装了护栏柱,它们之间的分布差异大致,因此它们之间的空间被估算并用于找到两个帖子之间最有可能的距离。研究团队使用了开发方法的各种组合来监视高层建筑项目的捕获图像中的护栏系统。比较精度和召回指标表明,级联分类器通过落地检测和护栏间距估计来取得更好的性能。研究结果表明,拟议的护栏识别系统可以改善护栏的评估,并促进安全工程师确定高层建筑项目中跌落危害的任务。
translated by 谷歌翻译
本文提议使用修改的完全连接层转移初始化,以进行1900诊断。卷积神经网络(CNN)在图像分类中取得了显着的结果。但是,由于图像识别应用程序的复杂性,培训高性能模型是一个非常复杂且耗时的过程。另一方面,转移学习是一种相对较新的学习方法,已在许多领域使用,以减少计算来实现良好的性能。在这项研究中,Pytorch预训练的模型(VGG19 \ _bn和WideresNet -101)首次在MNIST数据集中应用于初始化,并具有修改的完全连接的层。先前在Imagenet中对使用的Pytorch预培训模型进行了培训。提出的模型在Kaggle笔记本电脑中得到了开发和验证,并且在网络培训过程中没有花费巨大的计算时间,达到了99.77%的出色精度。我们还将相同的方法应用于SIIM-FISABIO-RSNA COVID-19检测数据集,并达到80.01%的精度。相比之下,以前的方法在训练过程中需要大量的压缩时间才能达到高性能模型。代码可在以下链接上找到:github.com/dipuk0506/spinalnet
translated by 谷歌翻译